A High Performance Piezoelectric Sensor for Dynamic Force Monitoring of Landslide
نویسندگان
چکیده
Due to the increasing influence of human engineering activities, it is important to monitor the transient disturbance during the evolution process of landslide. For this purpose, a high-performance piezoelectric sensor is presented in this paper. To adapt the high static and dynamic stress environment in slope engineering, two key techniques, namely, the self-structure pressure distribution method (SSPDM) and the capacitive circuit voltage distribution method (CCVDM) are employed in the design of the sensor. The SSPDM can greatly improve the compressive capacity and the CCVDM can quantitatively decrease the high direct response voltage. Then, the calibration experiments are conducted via the independently invented static and transient mechanism since the conventional testing machines cannot match the calibration requirements. The sensitivity coefficient is obtained and the results reveal that the sensor has the characteristics of high compressive capacity, stable sensitivities under different static preload levels and wide-range dynamic measuring linearity. Finally, to reduce the measuring error caused by charge leakage of the piezoelectric element, a low-frequency correction method is proposed and experimental verified. Therefore, with the satisfactory static and dynamic properties and the improving low-frequency measuring reliability, the sensor can complement dynamic monitoring capability of the existing landslide monitoring and forecasting system.
منابع مشابه
Modeling and analysis of a three-component piezoelectric force sensor
This paper presents a mathematical model for the vibration analysis of a three-component piezoelectric force sensor. The cubic theory of weakly nonlinear electroelasticity is applied to the model for describing the electromechanical coupling effect in the piezoelectric sensing elements which operate in thickness-shear and thickness-stretch vibration modes. Hamilton's principle is used to derive...
متن کاملApplication of Piezoelectric and Functionally Graded Materials in Designing Electrostatically Actuated Micro Switches
In this research, a functionally graded microbeam bonded with piezoelectric layers is analyzed under electric force. Static and dynamic instability due to the electric actuation is studied because of its importance in micro electro mechanical systems, especially in micro switches. In order to prevent pull-in instability, two piezoelectric layers are used as sensor and actuator. A current amplif...
متن کاملDesign and Construction of a Novel Tactile Sensor for Measuring Contact-Force, Based on Piezoelectric Effect
In this paper, design and construction of a tactile sensor for measuring contact-force is presented. Mechanism of measuring contact-force in this tactile sensor is based on impedance changing of piezoelectric crystal and voltage of different points in circuit as a result of applying force on the crystal. By considering a specific point in the circuit and recording the changes of its voltage, ma...
متن کاملOnline Monitoring for Industrial Processes Quality Control Using Time Varying Parameter Model
A novel data-driven soft sensor is designed for online product quality prediction and control performance modification in industrial units. A combined approach of time variable parameter (TVP) model, dynamic auto regressive exogenous variable (DARX) algorithm, nonlinear correlation analysis and criterion-based elimination method is introduced in this work. The soft sensor performance validation...
متن کاملCompensation for the Piezoelectric Sensor
Piezoelectric force sensors are used in more and more industries and areas for the monitoring of the production process or testing products’ performance. In some high-precision testing fields, the dynamic measurement performances of the test system itself have to be examined. Based on the dynamic response mathematical model of test system itself, this paper studies the dynamic measuring acceler...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2017